首页> 外文OA文献 >Packing Hyperspheres in High-Dimensional Euclidean Spaces
【2h】

Packing Hyperspheres in High-Dimensional Euclidean Spaces

机译:在高维欧氏空间中包装超球面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present the first study of disordered jammed hard-sphere packings infour-, five- and six-dimensional Euclidean spaces. Using a collision-drivenpacking generation algorithm, we obtain the first estimates for the packingfractions of the maximally random jammed (MRJ) states for space dimensions$d=4$, 5 and 6 to be $\phi_{MRJ} \simeq 0.46$, 0.31 and 0.20, respectively. Toa good approximation, the MRJ density obeys the scaling form $\phi_{MRJ}=c_1/2^d+(c_2 d)/2^d$, where $c_1=-2.72$ and $c_2=2.56$, which appears to beconsistent with high-dimensional asymptotic limit, albeit with differentcoefficients. Calculations of the pair correlation function $g_{2}(r)$ andstructure factor $S(k)$ for these states show that short-range orderingappreciably decreases with increasing dimension, consistent with a recentlyproposed ``decorrelation principle,'' which, among othe things, states thatunconstrained correlations diminish as the dimension increases and vanishentirely in the limit $d \to \infty$. As in three dimensions (where $\phi_{MRJ}\simeq 0.64$), the packings show no signs of crystallization, are isostatic,and have a power-law divergence in $g_{2}(r)$ at contact with power-lawexponent $\simeq 0.4$. Across dimensions, the cumulative number of neighborsequals the kissing number of the conjectured densest packing close to where$g_{2}(r)$ has its first minimum. We obtain estimates for the freezing andmelting desnities for the equilibrium hard-sphere fluid-solid transition,$\phi_F \simeq 0.32$ and $\phi_M \simeq 0.39$, respectively, for $d=4$, and$\phi_F \simeq 0.19$ and $\phi_M \simeq 0.24$, respectively, for $d=5$.
机译:我们目前对四维,五维和六维欧几里得空间中无序堵塞的硬球堆积进行了首次研究。使用碰撞驱动的打包生成算法,我们获得了空间尺寸$ d = 4 $,5和6为$ \ phi_ {MRJ} \ simeq 0.46 $的最大随机阻塞(MRJ)状态的packingfractions的第一估计值,分别为0.31和0.20。为了得到一个很好的近似值,MRJ密度遵循缩放形式$ \ phi_ {MRJ} = c_1 / 2 ^ d +(c_2 d)/ 2 ^ d $,其中$ c_1 = -2.72 $和$ c_2 = 2.56 $与高维渐近极限一致,尽管系数不同。对这些状态的对相关函数$ g_ {2}(r)$和结构因子$ S(k)$的计算表明,短程排序随尺寸的增加而明显减小,这与最近提出的“去相关原理”一致,在其他事物中,指出无约束的相关性随维数的增加而减小,并在极限$ d \ infty $中消失。就像在三个维度上一样(其中$ \ phi_ {MRJ} \ simeq 0.64 $),填充物没有结晶的迹象,是等静的,并且在接触电源时在$ g_ {2}(r)$中具有幂律散度-lawexponent $ \ simeq 0.4 $。在整个维度上,neighborse的累积数等于所推测的最密集堆积的接吻数,接近g_ {2}(r)$的第一个最小值。对于$ d = 4 $和$ \ phi_F \ simeq,我们分别获得平衡硬球流固转换的冻结和融化密度的估计值,$ \ phi_F \ simeq 0.32 $和$ \ phi_M \ simeq 0.39 $。对于$ d = 5 $,分别为0.19 $和$ \ phi_M \ simeq 0.24 $。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号